Cool Screen Backgrounds using SAS/GRAPH @
Bob Newman, Amadeus Software Limited

ABSTRACT

In this paper, we show how the SAS Data Step Graphics
Interface (DSGI) can be used to generate graphics files which
can be used as unusual and interesting screen backgrounds for
web pages. We begin with patterns of tessellating polyominoes.
(A tessellation is a tiling of the plane. A polyomino is like a
domino only bigger i.e. it is made up of more than two squares.)
Later we move on to “squaring the square” patterns, and show
how to incorporate images into them.

DSGI

There are many SAS procedures that will generate graphics for
you — GCHART, GPLOT and G3D, to name but a few — but you
can also generate graphics from a datastep, using DSGI.

We will be using DSGI to generate graphs from scratch, but it
can also be used to enhance existing graphs. This makes it an
alternative to using the “annotate” facility of SAS/Graph —
although for ease of use, there isn’t much to choose between
them.

There are a large number of DSGI routines, but which ones are
actually available at any given time depends on which DSGI
state you are in. At the start of the datastep, the state is GKCL
(clear). The two other states we will encounter are WSAC
(workstation active) and GSOP (graphics segment open). The
basic structure of a DSGI datastep is:

data myplotds;
/* We are in GKCL state.
This is a good time to set some GOPTIONS etc. */
rc=ginit();
/* This routine initialises DSGI, and puts us into
WSAC state, where we can perform virtually any
DSGI function apart from actually generating
graphics. Routines we can call include GSET to set
DSGI options, define bundles, windows, viewports
etc; and GASK to get information. */
rc=graph('clear');
/* This routine opens a graphics segment, putting us
into GSOP state, in which we can generate our
graphics using GDRAW etc. *
rc=gdraw('line',1,20,30,40,50);
/* For instance; */
/* When we have finished drawing the graph, we
close the segment: */
rc=graph ('update') ;
/* This puts us back into WSAC state. We may now
want to call some routines to specify where and how
the graph is to be stored or displayed. */
rc=gterm;
/* Terminates DSGI, putting us back into GKCL state
*/
run;
/* On execution of “run” statement, graphics are
displayed. */

PLOTTING MACRO LIBRARY

For this application, we will generate all our GDRAW calls using
macros. The macros are all stored in a catalogue called
POLYMACS, each of them in a SOURCE entry whose name is
the same as that of the macro. We can then make these

sl Rl ATl

macros available to our datastep by defining a FILENAME to
point to the macro catalogue, and adding this filename to our
macro search path, as follows:

libname poly 'c:\Noggs\SAS\poly';

filename polymacs catalog
'poly.polymacs’';

options sasautos=(sasautos,polymacs);

The macros themselves are not particularly exciting. At the
heart of them is one called SHAPE, which looks like this:

$macro shape (c,parms) ;
rc=gset ('filcolor', &c);
* Set fill colour;
rc=gset ('filtype', 'solid"');
* Set fill type;
rc=gdraw ('fill', &parms) ;
* Draw filled polygon;
$mend shape;

Above SHAPE, there are macros with names like TEE,
HPIECE, LOCK25 and even SQUARE, each of which plots a
single polygon of a specific shape and colours it in. Here, for
example, is the HPIECE macro:

$macro hpiece(x,y,c,s=1,f=0,r=0);
%let xlist=
0,1,1,4,4,5,5,4,4,1,1,0,0;
%let ylist=
0,0,1,1,0,0,3,3,2,2,3,3,0;
sparmgen (sbquote (&xlist),
%bquote (&ylist),
&x, &y, &s, f=&£f, r=41) ;
%shape (&c, sbquote (&parms)) ;
$mend hpiece;

The parameters to this macro are the position (X,Y) at which
the shape is to be plotted, the colour C with which it is to be
filled, and three optional parameters. S is the scale, and F and
R are flags which can be used to indicate that the shape is to
be “flipped” or reflected respectively. The PARMGEN macro
combines this information with the basic shape template
specified in xlist and ylist to create a parameter string that the
GDRAW routines will understand.

Above all these is a macro called REPEAT, which plots a whole
line of similar polygons, identically aligned, at a specified
spacing, and using colours in a specified sequence.

COLOURS

DSGI handles colours in a slightly non-standard way. Routines
such as GDRAW do not use SAS colour names; instead they
use colour numbers. You can use GSET to specify what
colours you want to associate with what numbers e.g.

rc=gset ('colrep',3, 'cyan');

A brief digression on SAS colour naming: There are several
different ways of naming colours in SAS.

1. By their English name. RED, GREEN, BLUE, CYAN,
GRAY, GREY etc are obvious, but SAS also knows

Amadeus Software Limited, Orchard Farm, Witney Lane, Leafield, Oxfordshire UK OX29 9PG
Tel: 01993 878287 Fax: 01993 878042 email:info@amadeus.co.uk

Page 1 of 1

about a fair number of other colours, including
SALMON, TAN, OLIVE, VIOLET, LIME, MAROON,
LILAC, STEEL etc.

2. By a SASsy abbreviation of an English phrase e.g.
LIG (light green), VIPK (vivid pink), DAGRYBR (dark
greyish yellowish brown!)

3. By an RGB specification e.g. CXFFFF0O for yellow.

4. By an HLS (hue/lightness/saturation) specification
e.g. HOB480FF for yellow.

If the precise colour specified is not available on the output
device being used, SAS will do the best it can.

To see what colours are defined, and what they look like on
your screen, visit http://www.devenezia.com/docs/SAS/sas-
colors.html.

For use with this application, | have defined a macro called
COLDEF, which defines a set of colours suitable for use in a
tessellating background e.g. “%coldef(violet);” defines colours 1
to 4 as four different tasteful shades of violet.

A SAMPLE PROGRAM

Assuming the macros are already set up ready for use, here is
the remainder of a program to generate part of a tessellation
using the shape | have called HPIECE, and to display it on the
screen. Note that the units we are using here are “PCT" i.e.
percent of the graphics area.

Goptions reset=global gunit=pct
targetdevice=pscolor;
%global parms count;

data null ;

rc=ginit();

rc=graph('clear');

%coldef (green) ;

$let clistl=1;

$let clist2=2;

$repeat (hpiece,0,0,24,0,10,
%bquote (&clistl),s=4);

%repeat (hpiece,4,8,24,0,10,
Sbquote (&clist2),s=4, f=1);

%repeat (hpiece,12,12,24,0,10,
%bquote (&clistl), s=4);

Srepeat (hpiece,16,20,24,0,10,
Sbquote (&clist2) ,s=4,f=1);

Srepeat (hpiece,24,24,24,0,10,
Sbquote (&clistl),s=4);

%Srepeat (hpiece,28,32,24,0,10,
%bquote (&clist2) ,s=4,£f=1);

Srepeat (hpiece, 36,36,24,0,10,
Sbquote (&clistl) ,s=4);

Srepeat (hpiece, 40,44,24,0,10,
%bquote (&clist2),s=4,f=1);

%repeat (hpiece, 48,48,24,0,10,
Sbquote (&clistl), s=4);

$repeat (hpiece, 52,56,24,0,10,
Sbquote (&clist2),s=4,£f=1);

$repeat (hpiece, 60,60,24,0,10,
%bquote (&clistl), s=4);

$repeat (hpiece, 64,68,24,0,10,
Sbquote (&clist2),s=4,f=1);

rc=graph ('update') ;

rc=gterm() ;

run;

The output looks like this. It's a bit untidy, but ._?c i

good enough for us to convince ourselves that T S
the shape really does tessellate (i.e. tile the plane), and also for
us to identify how much of the pattern we need to save in our
graphics file for use as a screen background. In this case, it
looks as though the pattern repeats every 6 squares
horizontally, and also every 6 squares vertically. We'll use

squares 16 pixels on a side, so our graphics file will be 96x96
pixels.

CREATING THE GRAPHICS FILE

We are now ready to create the graphics file. We need to
change our program in only two places:

First, we must specify a FILENAME for our graphics file, and
alter the GOPTIONS to specify output to it, in some suitable
format — here | have used PNG. SAS provides drivers for
several others — you can use PROC GDEVICE to find what is
available. We use the XPIXELS and YPIXELS options to
specify the size of our image.

The other change is that we have to arrange for the graphics
file to contain only the 6x6 squares (96x96 pixels) of design that
we want. To achieve this, we define a window using
GSET(‘window’). The co-ordinates and dimensions here are
specified in percent of the graphics area. This window is given
a transformation number. We clip around the edge of the
window using GSET(‘clip’). We then activate the transformation
using GSET(‘transno’).

The revised program looks like this:

filename png

"c:\Noggs\SAS\poly\polyh.png";

goptions reset=global cback=WHITE
device=PNG gsfname=png
gsfmode=replace
gaccess=sasgafix gsflen=80
display gunit=pct xpixels=96
ypixels=96;

%global parms count;

data null ;

rc=ginit();

rc=graph('clear');

rc=gset ('clip', 'on');

rc=gset ('window',1,44,24,68,48);

rc=gset ('transno',1);

%$coldef (green) ;

$let clistl=1l;

$let clist2=2;

$repeat (hpiece,0,0,24,0,10,
Sbquote (&clistl),s=4);

and then as before.

The resulting image in the PNG file looks like this:

To see what the finished background looks like, go to
http://www.noggs.dsl.pipex.com/ts/ . This page also
incorporates a number of other backgrounds, all created in
much the same way. You will see them as you move the cursor
over the relevant links. (This is achieved using Javascript
rollovers, which are not covered in the present paper. | do not
claim to be a Javascript expert!)

SQUARING THE SQUARE

The other page in the “ts” part of my website is devoted to a
“squaring the square” pattern. Surprisingly, it is possible to
dissect a square into a number of smaller squares, all of
different sizes. The story of how this was discovered is quite
entertaining; there is also an intriguing isomorphism between
constructing rectangles from different-sized squares, and
solving electrical circuits using Kirchoff’s laws. Martin Gardner
devoted one of his columns in Scientific American to the
subject. For an only slightly heavier account of the underlying
mathematics, see
http://www.math.uwaterloo.ca/navigation/ideas/articles/honsber

ger2/index.shtml.

For our present purposes, this is just another geometric pattern
that we can generate easily using our existing repertoire of
macros. The code gets slightly messier because the total
(logical) size of the pattern is 175x175, and yet we are obliged
to specify all the coordinates in terms of percent of the graphics
area. We will take the side of our smallest square to be 1 pixel,
giving an image of 175x175 pixels. (We would have preferred
350x350 or 525x525, but the most the SAS PNG driver can
handle is 615x345.)

It also becomes clear, when we are looking at squares, that our
SAS code and the graphics drivers are not yet quite on the
same wavelength. In order to get in the graphics file something
that looks to us to be a 12x12 square, for example, we have to
try to plot an 11x11 square. Similarly, to plot a 1x1 square - a
single pixel — we have to try to plot a 0x0 square.

So above our SQUARE macro (which plots a square in the
obvious way) we define a new macro RSQUARE which
subtracts one from the side of the square, and also halves all
the coordinate values to make them acceptable in the PCT
units we are obliged to use at this stage.

$macro rsquare(x, y, c, s=1, g=2);
$square ($sysevalf (&x/&q),
$sysevalf (&y/&q), &c,
s=%sysevalf ((&s-1)/&q));
$mend rsquare;

With the aid of this macro, and our existing macro library, it is
not difficult to write a program to generate an interesting new
image that looks like this:

3

il R Wit

The new concept we are going to introduce is viewports, which
we will use to superimpose images on our pattern of squares.
The image concerned must already exist as an entry in a SAS
graphics catalogue. It is possible to paste a wide range of
graphics formats into SAS and save them as such entries,
although this technique results in a bitmap with no particular
structure discernible to SAS. | preferred to try out PROC
GIMPORT to import some images “properly”. Unfortunately
GIMPORT (still!) only supports CGM graphics, which | suspect
most other packages have forgotten altogether. | could find only
one library of freely-available CGM images on the web, so |
used it (with thanks to a gentleman who calls himself Kiyotei).
The code to read in a CGM image looks like this:

filename cgmfile

'C:\Noggs\SAS\poly\cgm\
cgmclips\sunprst.cgm';

proc gimport fileref=cgmfile

filetype=cgm format=binary;

run;

The first such gimport will yield an entry called “cgm” in the
graphics catalogue. Subsequent entries will be called “cgm1”,
“cgm2” etc.

Once the images have been read into SAS graphics entries, the
new programming technique we require amounts simply to
defining a viewport corresponding to one of the squares of our
basic pattern, associating the desired image with it, and then
activating it. The image is automatically scaled to fit the chosen
square. The relevant code looks like this:

rc=gset ('viewport',2,94./175,94./175,
1.,1.);

rc=gset ('transno',2);

rc=graph ('insert', 'cgm');

and it can go in just before the
rc=graph ('update') ;

which generates the output. Here “2” is the viewport number,
and the other 4 parameters to the “viewport” call are the co-
ordinates of the bottom-left and top-right corners of the area
into which the image is to be inserted. These are all expressed
as fractions of the graphics area. “cgm” in the “insert” call is the
name of the entry in the SAS graphics catalogue which
contains the image.

The resulting image looks like this:

Repeated application of the same principle to incorporate more
of Kiyotei’s interesting graphics yields this:

Note that in this final version with many images, each one is
scaled properly according to the size of the square that
contains it.

To see these patterns on the web, follow the link from the
tessellations page, or go directly to
http://www.noggs.dsl.pipex.com/ts/sgasqga.htm . As before,
move the cursor over the links to make interesting things
happen.

GET TESSELLATING!

| found most of the polyomino tessellations given here years
ago when confronted with a puzzle from a magazine: “What is
the smallest polyomino that tessellates and locks?” The answer
given was a polyomino of 25 squares, which didn’t look as
though it could possibly be minimal. | believe (but have no idea
how to prove) that my 14-square and 12-square solutions are
minimal, in their different ways. If anyone can beat them, please
let me know. (I'll be sick as a parrot.)

All the code is appended to this paper. You are welcome to use
it to generate your own backgrounds, and adorn your web
pages with them.

REFERENCES
SAS System Help, particularly the “DSGI Graphics Summary’
For other references, see the text.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Author Name Bob Newman

Company: Amadeus Software Limited

Address: Orchard Farm, Witney Lane,
Leafield, Oxon OX29 9PG

Work Phone: 01993 878287

Fax: 01993 878042

Email: bob.newman@amadeus.co.uk

Web: www.amadeus.co.uk

2

SAS and all other SAS Institute Inc. product or i W
service names are registered trademarks or trademarks of SAS Institute

Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

